

Project Title:

Temporal Nonmonotonic description logic

Supported By:

RIIMA Laboratory

University of Science and Technology Houari

Boumediene (USTHB)

TECHNICAL REPORT

Number: TR-2013-01

Date: March, 2013

 Authors:

PHD Student. Ouarda Bettaz
Professor. Aicha Mokhtari

Assistant Professor. Narhimene boustia

Abstract

In this ongoing work, we present a new type of description logic, which is at the same time temporal and

nonmonotonic. This kind of description logic allows representing both default and temporal features in concepts

definition. We performed this task by extending the nonmonotonic description logic JClassicδε with temporal

aspects. JClassicδε allows representing default and exception properties in concepts definition. It permits actually

to go beyond the strict limitations on concept description and allows consequently to fully define them; by

providing both necessary and sufficient conditions for their representation, which allows the classification

process. Contrary to the use of strict knowledge that provides only necessary conditions leaving the concepts

partially defined. However we frequently need to add the temporal aspect to the nonmonotonic feature as it‟s the

case in causal reasoning, planning process, action theory and access control. Our aim is to extend this logic

further with temporal connectives to grant the possibility to represent temporal properties of concepts and that by

referring to temporal description logic.

Keywords: Nonmonotonic description logic, Default knowledge, Temporal description logic, Temporal nonmonotonic

description logic.

1. Introduction

Description logics (DLs) are good formalisms for knowledge base representation [7]. However classical

forms of description logics do not permit to represent neither default nor exception facts about concepts, for

example: they do not allow representing the fact that all birds fly by default, but a penguin is a bird that

exceptionally doesn‟t fly. The impossibility of representing this kind of information leaves the knowledge base

partially defined which subsequently affects the inference process. The solution to represent such kind of

knowledge is to rely on nonmonotonic reasoning that is based on the use of default description logic. Many

approaches were proposed in the literature: Quantz and Royer [15], Padgham and Nebel [13], Padgham and

Zhang [14], Baader and Hollunder [6]. The problem with these approaches is that they use a limited form of

default reasoning; where concepts are defined only by using strict properties while default knowledge is

represented using incidental rules, considering the fact that most of concepts can‟t be just defined by the use of

strict properties, that will leave the knowledge base inevitably partially defined, consequently the classification

process won‟t be complete. The approach that overcomes this problem was proposed by Coupey and Fouqueré

[11]. In fact they developed a new nonmonotonic description logic named 𝓐𝓛δε that permitted the introduction

of the notion of default and exception in concepts definition, it was elaborated by adding to the description logic

𝓐𝓛 [7] two connectives: (δ) to represent default facts and (ε) to represent exception facts. This language was

improved by the addition of connectors from C-classic which permitted to augment its expressivity and thus

make it usable from a practical point of view. This new language was called JClassicδε [8], [9]. Using this

description logic we can define the concept Tree as having by default branches and always having a trunk and

roots:

Tree ≡ δ With_branches ⊓ With_trunk ⊓With_roots

 Now if we want to define the concept Scion as being a tree that is by default one year old and exceptionally

has branches we will write it this way:

Scion ≡ δ One_year_old ⊓ Tree ⊓ With_branches
ε

In this example the concept Scion that is subsumed by the concept Tree will only inherit the properties

With_trunk and With_roots, but not the property With_branches since this property is an exception for the

concept Scion.

In this work we developed a temporal nonmonotonic description logic and that by adding to the

nonmonotonic description logic JClassicδε temporal connectives. The purpose of doing so is to represent

temporal concepts while having default knowledge. Differing from the existing temporal description logics

where temporal components are added to classical description logics. This will permit to better manage the time

aspect in a variety of domains such as reasoning about actions and plans and enhance natural languages

comprehension…etc, it will also allow us to improve access control, actually our future aim is to define a

dynamic acces control model with the use of the temporal nonmonotonic description logic . Indeed we developed

this description logic initially for that purpose. To reach our goal we referred to the use of temporal description

logic (TDL) [1], [2], [3], [4], [7], [10]. In the research field on temporal description logic two approaches for

modeling the notion of time were considered: the modal temporal logic and the reified temporal logic [12]. In

our work we will employ modal temporal logic. In which the connectors □ and ◊ represents respectively the

notion of (always in the future) and (sometimes in the future). The flow of time can be taken from two different

angles, we can actually consider time as a set of points (instances) or as a set of intervals. In [1], [2], [7], [10],

the different approaches on temporal logic based on points and intervals have been widely spread. For the

purpose of our work we are interested in the use of interval based approach to define the specific interval at

which a concept is valid. Concerning this approach many studies were undertaken. Artale and Franconi [1], [2],

[3] put into evidence a TDL inspired by Schmiedel‟s [16] approach, that they restricted by discarding the □

operator for decidability matters. Example [5]:

◊ (X Y) (Y starts X).(Student@ X ⊓ Bachelor_student @Y).

In this example, we have two intervals X and Y, where X and Y start at the same time but Y is ended before X.

So the described persons are students during the interval X and they are specifically Bachelor students for the

initial sub-interval Y of X. The temporal part 𝓣𝓛 that we will be using for extending the nonmonotonic

description logic is the one used in the TDL defined by Artale and Franconi [1], [2] and [3].

The rest of the paper is organized as follows: In the second section we introduce our temporal nonmonotonic

description logic TDLδε by providing its syntax, and we put forward an algebraic framework with both

descriptive and structural point of view. We also describe the algorithm for subsumption calculation and provide

elements that allows us to show in the future that t-subδε is correct, complete and with a polynomial complexity.

Finally we define the inheritance algorithm. We conclude this work in section 3.

2. TDLδε

In this section we introduce our new temporal nonmonotonic description logic that we elaborated by the

combination of the nonmonotonic description logic JClassicδε[8], [9] and the temporal component @ from 𝓣𝓛

[1], [2], [3]. The result of this process is the temporal nonmonotonic description logic that we named TDLδε. It

consists of: a set of atomic concepts P and atomic roles R, the two constants ⊤ (Top) and ⊥ (Bottom) that

represents respectively the universal and the bottom concept, a set of individuals I called „classic individuals‟,

the concepts C and D, the unary connectives δ (Default) and ε (Exception), the binary conjunction ⊓, the

quantifier ∀ that enables universal quantification on role values, and the temporal qualifier @ to represent the

interval „X‟ at which a concept C applies, u is a real number, n is an integer, Ii Are „classic individuals‟.

Table1. Syntax of TDLδε

C, D → P (Atomic concept)

|⊤ (Universal Concept)

|⊥ (Bottom concept)

| ¬P (Atomic negation)

| C ⊓ D (Intersection)

| Min u (u is a real number)

| Max u (u is a real number)

| ONE-OF{I1,…In} (Concept in extension)

| R FILLS {I1,…In} (Subset of value for R)

| R AT-LEAST n Cardinality for R (minimum)

| R AT-MOST n Cardinality for R (maximum)

| ∀ R.C (Universal quantifier)

| δ C (Concept C by default)

| C
ε
 (Exception to the concept C)

| C@X (Qualifier)

Using this description logic we can represent temporal aspects, the properties: default, exception, exception

of exception, and so on. For instance in the case of access control in the medical domain, we can define the

concept Doctor as being a Staff member that Exercises officially his function by default and that has the right to

Access the medical database records of patients during Working hours.

Doctor ≡ Staff–Member ⊓ δExercise ⊓ Access – Mdb–Records@(working Hours).

Now we can define the concept Resident as a Doctor that exceptionally doesn‟t Exercise officially since he

is still a student.

Resident ≡ Doctor ⊓ Exercise
ε

Here the concept Resident will inherit the property Staff Member and the right to Access the medical

database records during working hours but not the property Exercise since it is an exception for the concept

Resident. In the case where we have a context of Emergency another exception on the concept Exercise is

applied for Resident.

Resident ⊓ Emergency ≡ Doctor ⊓ (Exercise
ε
)

ε

In this case, the exception over an exception omits the exception, therefore in an emergency context Resident

has the right to Exercise.

The specificity of this logic is the use of an algebraic-based semantics unlike the classical practice where the

semantics is based rather on a first order logic interpretation. Following this algebraic semantics, the concepts

are written in a particular form called normal form.

2.1. Algebraic Framework

TDLδε is endowed with an algebraic framework; it allows distinguishing and formalizing the different types

of subsumption namely descriptive and structural.

2.1.1. Descriptive point of view

From a descriptive point of view the calculation of subsumption consists of the comparison of terms through

an equational system called EQ which defines formally the main properties of connectors and determines the

equivalence classes of terms.

EQ: An equational System for TDLδε

∀ A, B, C, D ∈ TDLδε

01: (A ⊓ B) ⊓ C = A ⊓ (B ⊓ C)

02: A ⊓ B= B ⊓ A

03: A ⊓ A= A

04: ⊤⊓ A= A

05: ⊥⊓ A= ⊥

06: (∀ R:A) ⊓ (∀ R:B)= ∀ R:(A ⊓ B)

07: ∀ R:⊤=⊤

08: (δ A)
ε
= A

ε

09: δ(A⊓B)= (δA) ⊓ (δ B)

10: A ⊓ δ A =A

11: A
ε
 ⊓ δ A= A

ε

12: δδ A= δ A

13: C @ X ⊓ D @ X =(C ⊓ D)@X

14: (C@X1) @ X2= (C@X1)

15: (C@X1 ⊓ D) @ X2= C@ X1 ⊓ D@ X2

The first twelve axioms correspond to JClassicδε connectives [8], [9] and the axioms from thirteen to fifteen

correspond to the temporal operator @. The axioms express that the conjunction of concepts is:

01: associative, 02: commutative, 03: idempotent.

04: the most general concept in the hierarchy top (⊤) is the neutral element of the conjunction.

05: the most specific concept bottom (⊥) is the absorbent element.

06: the connector ∀R:A is distributive over the conjunction.

07: represent a false restriction on roles.

08: an exception to the default concept is the same as an exception to the underlying concept.

09: a default on a conjunction of concepts is similar to the conjunction of two defaults.

10 and 11: express the fact that both A and A
ε
 are subsumed by δA.

12: Allows removal of redundant default chains.

13: @ operator is distributive over the conjunction.

14: Concept C is valid at the first interval it is related to.

15: @ operator is distributive over conjunction, but still C is valid at the first interval it is related to.

Descriptive subsumption denoted by ⊑d is a partial order relation to order terms. Equality (modulo the axioms

EQ) between two terms is denoted =EQ. which is a congruence relation that partitions the set of terms, i.e. =EQ

allows to form equivalence classes between terms. The descriptive subsumption is defined using the congruence

relation and conjunction of concepts as follows:

Definition 1. (Descriptive subsumption) Let C and D be two terms of TDLδε, C ⊑d D, i.e. D subsumes

descriptively C, iff C ⊓ D =EQ C.

From an algorithmic point of view terms are not easily manipulated through subsumption. For this a

structural point of view should be adopted which is closer to the algorithmic aspect of computing subsumption.

This allows us to formalize calculation of subsumption in the implementation of TDLδε and also to endow it with

an intentional semantic.

2.1.2. Structural point of view

We present in this section the structural point of view for the subsumption in TDLδε. This provides a very

closer vision to the algorithmic aspect and a formal framework to validate the algorithmic approach. For this

purpose we define CLδε-t an intentional semantic for TDLδε. Elements from CLδε-t are the canonical intentional

representation of terms of TDLδε that allows representing the properties of concepts by using a normal form.

These elements are formed of a pair of 7-uples, both having the same structure, the first is used to represent the

strict properties and the second for the default properties, the six first fields of the 7-uples are the same as for the

normal form defined for JClassicδε[8], [9] we introduced the 7th field to represent the temporal aspect. The

structure of the elements of CLδε-t is as follows:

Definition 2. An element of CLδε-t corresponding to a term T of TDLδε is a pair <tθ, tδ>, where tθ is the strict

part of T and tδ the default part of T, tθ and tδ are 7-uples (dom, min, max, π, r, ε, t) defined as follows:

dom: is a set of individuals if the definition of T contains a property ONE-OF otherwise the special symbol

UNIV.

min(resp. max): its either a real if T contains a property MIN (resp MAX), or the special symbol MIN-R

(resp. MAX-R) otherwise.

π: is the set of primitive concepts contained in T.

r: contains the following elements: <R, fillers, least, most, c > where:

R: is the role name.

fillers: is a set of individuals if T contains a property R FILLS or Ø otherwise.

least (resp. most): is an integer if T contains the property R AT-LEAST (resp. R AT-MOST) or 0 (resp.

NOLIMIT) otherwise.

c: is the normal form of C if T contains the property ∀ R.C.

ε: is a set of seven elements (dom, min, max, π, r, ε, t).

t: is the set of temporal concepts contained in T, it contains (dom, min, max, π, r, ε, t) where:

dom: is ONE-OF “ Saturday, Sunday, Monday, Tuesday, Wednesday, Thursday, Friday” if the temporal

context is a day of the week, otherwise the special symbol TIME if the temporal context is a time interval.

min (resp. max): is a real that represents the beginning (resp. the end) of an interval if the context is a time

interval otherwise Ø if the temporal context is a day of the week. Example the interval [8:00, 10:00] the min

takes the value “8” and Max the value “10”.

Notation: the complete structure is noted : <(tθdom, tθmin, tθmax, tθπ, tθr, tθε, tθt), (tδdom, tδmin, tδmax, tδπ, tδr, tδε, tδt) >.

We give an example about the normal form of a given concept Permission, in the domain of access control,

Permission(P1), is written as follows:

Permission(P1) ≡ Permision(P2)⊓ δpermission(P3) ⊓ Permission(p3)
ε
 ⊓ Permission(P4)@i.

The normal form is the following:

(<Univ, Min-R, Max-R, {Permission(P2)}, Ø, {Permission(P3)}, {Permission P4} >, < Univ, Min-R, Max-R,

{Permission (P2), permission(P3)}, Ø, {Permission(P3)}, {Permission P4}>).

Definition 3. (Homomorphism h)

The interpretation of connectors and constants of CLδε-t are denoted in Table 2, b0 is a constant used as a

denotation of ⊥.

Table2. Homomorphism h

TDLδε CLδε-t

⊤ ≺(UNIV, MIN-R, MAX-R, Ø, Ø, Ø, Ø), (UNIV, MIN-R, MAX-

R, Ø, Ø, Ø, Ø)≻

P ≺(UNIV, MIN-R, MAX-R, P, Ø, Ø, Ø), (UNIV, MIN-R, MAX-

R, P, Ø, Ø, Ø)≻

ONE-OF E

≺(E, MIN-R, MAX-R, Ø, Ø, Ø, Ø), (E, MIN-R, MAX-R, Ø, Ø,

Ø, Ø)≻

MIN u ≺(UNIV, u, MAX-R, Ø, Ø, Ø, Ø), (UNIV, u, MAX-R, Ø, Ø, Ø,

Ø)≻

MAX u ≺(UNIV, MIN-R, u, Ø, Ø, Ø, Ø), (UNIV, MIN-R, u, Ø, Ø, Ø,

Ø)≻

∀ R: C (C ≢⊤ and C ≢⊥) ≺(UNIV, MIN-R, MAX-R, Ø, {≺R, Ø , 0, |Cθ.dom|, C≻}, Ø, Ø),

(UNIV, MIN-R, MAX-R, Ø, {≺R, Ø , 0, |Cθ.dom|, C≻}, Ø, Ø)≻

R FILLS E (E ≠ Ø) ≺(UNIV, MIN-R, MAX-R, Ø, {≺R, E, |E|, NOLIMIT, t≻}, Ø,

Ø), (UNIV, MIN-R, MAX-R, Ø, {≺R, E, |E|, NOLIMIT, t≻}, Ø,

Ø)≻

R FILLS Ø ≺(UNIV, MIN-R, MAX-R, Ø, Ø, Ø, Ø), (UNIV, MIN-R, MAX-

R, Ø, Ø, Ø, Ø)≻

R AT-LEAST 0 ≺(UNIV, MIN-R, MAX-R, Ø, Ø, Ø, Ø), (UNIV, MIN-R, MAX-

R, Ø, Ø, Ø, Ø)≻

∀ R: C and C ≡ ⊤ ≺(UNIV, MIN-R, MAX-R, Ø, Ø, Ø, Ø), (UNIV, MIN-R, MAX-

R, Ø, Ø, Ø, Ø)≻

R AT-LEAST n (n≥ 1)

≺(UNIV, MIN-R, MAX-R, Ø, {≺R, Ø , n, NOLIMIT, t≻}, Ø,

Ø), (UNIV, MIN-R, MAX-R, Ø, {≺R, Ø, n, NOLIMIT, t≻}, Ø,

Ø)≻

R AT-MOST n (n≥ 1) ≺(UNIV, MIN-R, MAX-R, Ø, {≺R, Ø , 0, n, t≻}, Ø, Ø), (UNIV,

MIN-R, MAX-R, Ø, {≺R, Ø, 0, n, t≻}, Ø, Ø)≻

R AT-MOST 0

≺(UNIV, MIN-R, MAX-R, Ø, {≺R, Ø , 0, 0, b0≻}, Ø, Ø),

(UNIV, MIN-R, MAX-R, Ø, {≺R, Ø, 0, 0, b0≻}, Ø, Ø)≻

∀ R: C and C≡ ⊥

≺(UNIV, MIN-R, MAX-R, Ø, {≺R, Ø , 0, 0, b0≻}, Ø, Ø),

(UNIV, MIN-R, MAX-R, Ø, {≺R, Ø, 0, 0, b0≻}, Ø, Ø)≻

C ⊓ D c ⊗ d

δC ≺(UNIV, MIN-R, MAX-R, Ø, Ø, Ø, Ø), cδ≻

C
ε
 ≺ (UNIV, MIN-R, MAX-R, Ø, Ø, cδ, Ø), (cδ.dom, cδ.min, cδ.max,

cδ.π, cδ.r, cδ.ε⋃cδ, Ø) ≻

⊥ b0

C@t ≺(UNIV, MIN-R, MAX-R, C, Ø, Ø, {≺Domt, Mint, Maxt≻}),

(UNIV, MIN-R, MAX-R, C, Ø, Ø, {≺Domt, Mint, Maxt≻})≻

Domt≡ TIME

≺(UNIV, MIN-R, MAX-R, C, Ø, Ø, {≺ TIME, Mint, Maxt≻}),

(UNIV, MIN-R, MAX-R, C, Ø, Ø, {≺ TIME, Mint, Maxt≻})≻

Domt≡ DATE ≺(UNIV, MIN-R, MAX-R, C, Ø, Ø, {≺ ONE OF WEEK-

DAYS, Ø, Ø ≻}),(UNIV, MIN-R, MAX-R, C, Ø, Ø, {≺ ONE

OF WEEK-DAYS, Ø, Ø ≻})≻

δC@t

≺(UNIV, MIN-R, MAX-R, Ø, Ø, Ø, Ø) , cδ@t≻

C
ε
@t

≺(UNIV, MIN-R, MAX-R, Ø, Ø, cδ, ≺Domt, Mint, Maxt≻),

(cδ.dom, cδ.min, cδ.max, cδ.π, cδ.r, cδ.ε⋃cδ , cδ.t) ≻

We should now define the union of two elements of CLδε-t (⊗), This operation completes the definition of

the normal form

Definition 4. (Union of two normal forms)

For each normal form c of CLδε-t we have: b0 ⊗ c = c ⊗b0.

Given c and d two normal forms of CLδε-t different from b0 with the following form:

c = <(cθ, cδ)> and d= <(dθ, dδ)>

c⊗d = < (cθ⊕dθ), (cδ⊕ dδ)>

This definition uses a union operation of two seven uples of CLδε-t (⊕), the union of the seven uples is

performed on each field (dom, min, max, π, r, ε, t).

The calculation of the union is done through the semantic function Union-uple (A, B) (this is for A⊕B)

We should now define the algorithm of the union of two 7 uples proper to CLδε-t.

__

Algorithm 1. Union-uple (A, B)

Require: two 7-uple A and B: (adom, amin, amax, aπ, ar, aε, at) and (bdom, bmin, bmax, bπ, br, bε, bt)

Ensure: (udom, umin, umax, uπ, ur, uε, ut) the result uple of the union of A and B

 udom← adom⋃bdom

 umin← maxi(amin⋃bmin)

 umax← mini(amax⋃bmax)

 uπ← aπ⋃ bπ

 uε← aε⋃ bε

 ur← Ø

 ut←at⋃bt

 for <R, fills1, least1, most1,c1>∈ar do

 if ∃<R, fills2, least2, most2,c2> ∈br then

 ur ← ur⋃<R, fills, least, most, c> with

 c ← c1 ⊗ c2

 fills← fills1 ⋃ fills2

 least ← maxi(least1, least2, ⃒fills⃒)

 most ← mini(most1, most2, ⃒Cθdom⃒)

 else

 ur← ur ⋃ <R, c1>

 end if

 end for

 for <R, c2>∈br, such as ∄ element with the name R in ar do

 ur←ur⋃<R, c2>

 end for

 for < Domt1, Mint1, Maxt1>∈ at

 if ∃< Domt2, Mint2, Maxt2 >∈bt then

 ut ← ut⋃<Domt, Mint, Maxt> with

 Domt← Domt1⋃ Domt2

 Mint← maxi(Mint1⋃ Min t2)

 Maxt← mini(Maxt1⋃ Maxt2)

 else

 ut ← ut⋃< Domt1, Mint1, Maxt1>

 end if

 end for

 for < Domt2, Mint2, Maxt2>∈bt, such as ∄ elements < Domt1, Mint1, Maxt1> in at do

 ut ← ut⋃< Domt2, Mint2, Maxt2>

 end for

Structural subsumption: two terms of TDLδε are structurally equivalent iff their normal forms are equal. The

notation ⊑s for structural subsumption is a partial order relation.

The structural equality of two terms of TDLδε is noted =CL it‟s a congruence relation as =EQ in descriptive

subsumption. We define the structural subsumption using the congruence relation and conjunction of concepts as

follows:

Definition 5. (Structural subsumption) Let C and D two terms of TDLδε, C ⊑s D; i.e. D subsumes structurally

C, iff C ⊓ D =CL C.

Theorem 1. (Equivalency between descriptive subsumption and structural subsumption).

Let C and D two terms of TDLδε

C ⊑s D ⇔C ⊑d D

To infer new knowledge in this system, the subsumption relation is used. In the next section, we outline the

subsumption algorithm t-subδε used for TDLδε. The other inference operation in concern is inheritance it will be

presented in the upcoming sections.

2.2. Subsumption algorithm t-subδε

We present in this section the algorithm for subsumption calculation, this algorithm lays on the calculation

of structural subsumption described previously, we will define the algorithm t-subδε and the procedures it uses,

we also provide elements that allows us to show that t-subδε is correct, complete and with a polynomial

complexity.

2.2.1. Presentation of the algorithm t-subδε.

t-subδε is composed of two stages. The first is a normalization of descriptions. The second is a syntactic

comparison between normal forms. Let C and D be two terms of TDLδε. To answer the question “Is C subsumed

by D?” we apply the next procedure. The normal form of C and C ⊓ D are calculated with the procedure of

normalization. If the two normal forms are equal, the algorithm returns “Yes” otherwise it returns “No”.

 Procedure of normalization of description.

This procedure uses the semantics functions union-uple and which compute respectively the union of

two 7-uples () and two normal forms. The normalization (denoted in Algorithm 3.) permits to calculate

the normal form of a concept C from its given description denoted by fn(C).

 Procedure of comparison of normal forms.

The procedure Compar (defined in Algorithm 7.) which checks equality between two 7- uples t1 and t2 . t1
resp t2 have the form (ti.dom, ti.min, ti.max, ti.π, ti.r, ti.ε, ti.t) with i=1 (resp i=2). Compar calls the procedure
Compar-roles (defined in Algorithm 8.) which allows checking equality of sets which denote roles. This
procedure is denoted Compar(fn(C1), fn(C2), rep).

2.2.1.1. subsumption algorithm t-subδε

Algorithm 2. Algorithm t-subδε

Require: C and D two description of concepts of TDLδε

Ensure: Response “Yes” or “No” to question “Is C subsumed by D?”

{Compute normal form}

fn(C) ← Normalization (C)

fn(C ⊓ D) ← Normalization (C ⊓ D)

{Treatment of bottom}

if fn(C)=b0 then

 Response ← “Yes”

else

 if fn(C ⊓ D)= b0 then

 Response ← “No”

 else

 {Comparison of the obtained normal forms}

 Compar(fn(C) θ, fn(C ⊓ D) θ, rep1)

 if rep1=”Yes” then

 Compar(fn(C) δ, fn(C ⊓ D) δ, rep1)

 Response ← rep2

 else

 Response ← “No”

 end if

 end if

end if

2.2.1.2. Normalization Procedure

The Normalization algorithm that will be described next puts into evidence the homomorphism described

previously, it handles simple and composed terms, therefore it calls two other algorithms namely simpleterm and

composedterm. The procedure of Normalization allows the calculation of the normal form (denotation) of a

concept C given its description. This procedure of normalization uses the semantic functions union-uple (⊕) and

(⊗), which calculates respectively the union of two 7 uples and two normal forms.

Algorithm 3. Normalization procedure

Require: D is a description of a concept of TDLδε

Ensure: Normal form of D in CLδε-t (i.e. its normal form) fn(D), D has the form D ≡ T1 ⊓ T2 ⊓ …⊓Tn

with n ≥ 1

 If (D is ⊤) or (D is ⊥) or (D is a primitive concept) or (D is ONE-OF E) or (D is MIN u) or (D is MAX u) or

(D is R FILLS E (E ≠ Ø)) or (D is R FILLS Ø) or (D is R AT-LEAST n (n≥1)) or (D is R AT-LEAST 0) or

(D is R AT-MOST n (n≥1)) or (D is R AT-MOST 0) or (D is ∀ R: ⊤) or (D is ∀ R: ⊥) or (D is C@t) or (D

isDomt≡ TIME) or (D is Domt≡ DATE) then

 simpleterm

 else

 composedterm

 end if

Algorithm 4. Simpleterme procedure

 if D is ⊤then

 fn(D) ← ≺(UNIV, MIN-R, MAX-R, Ø, Ø, Ø, Ø), (UNIV, MIN-R, MAX-R, Ø, Ø, Ø, Ø)≻

 end if

 if D is ⊥then

 fn(D) ←b0

 end if

 if D is a primitive concept then

 fn(D) ← ≺(UNIV, MIN-R, MAX-R, {P}, Ø, Ø, Ø), (UNIV, MIN-R, MAX-R, {P}, Ø, Ø, Ø)≻

 end if

 if D is ONE-OF E then

 fn(D) ← ≺(E, MIN-R, MAX-R, Ø, Ø, Ø, Ø), (E, MIN-R, MAX-R, Ø, Ø, Ø, Ø)≻

 end if

 if D is MIN u then

 fn(D) ← ≺(UNIV, u, MAX-R, Ø, Ø, Ø, Ø), (UNIV, u, MAX-R, Ø, Ø, Ø, Ø)≻

 end if

 if D is MAX u then

 fn(D) ← ≺(UNIV, MIN-R, u, Ø, Ø, Ø, Ø), (UNIV, MIN-R, u, Ø, Ø, Ø, Ø)≻

 end if

 if D is R FILLS E (E ≠ Ø) then

 fn(D) ← ≺(UNIV, MIN-R, MAX-R, Ø, {≺R, E, |E|, NOLIMIT, t≻}, Ø, Ø),

 (UNIV, MIN-R, MAX-R, Ø, {≺R, E, |E|, NOLIMIT, t≻}, Ø, Ø)≻

 end if

 if (D is R FILLS Ø) or (D is R AT-LEAST 0) or (D is ∀ R: ⊤) then

 fn(D) ← t

 end if

 if D is R AT-LEAST n (n≥ 1) then

 fn(D) ← ≺(UNIV, MIN-R, MAX-R, Ø, {≺R, Ø , n, NOLIMIT, t≻}, Ø, Ø),

 (UNIV, MIN-R, MAX-R, Ø, {≺R, Ø, n, NOLIMIT, t≻}, Ø, Ø)≻

 end if

 if D is R AT-MOST n (n≥ 1) then

 fn(D) ← ≺(UNIV, MIN-R, MAX-R, Ø, {≺R, Ø , 0, n, t≻}, Ø, Ø),

 (UNIV, MIN-R, MAX-R, Ø, {≺R, Ø, 0, n, t≻}, Ø, Ø)≻

 end if

 if D is R AT-MOST 0 then

 fn(D) ← ≺(UNIV, MIN-R, MAX-R, Ø, {≺R, Ø , 0, 0, b0≻}, Ø, Ø),

 (UNIV, MIN-R, MAX-R, Ø, {≺R, Ø, 0, 0, b0≻}, Ø, Ø)≻

 end if

 if D is ∀ R: ⊥then

 fn(D) ← ≺(UNIV, MIN-R, MAX-R, Ø, {≺R, Ø , 0, 0, b0≻}, Ø, Ø),

 (UNIV, MIN-R, MAX-R, Ø, {≺R, Ø, 0, 0, b0≻}, Ø, Ø)≻

 end if

 if D is C@t then

 fn(D) ← ≺(UNIV, MIN-R, MAX-R, {C}, Ø, Ø,{≺Domt, Mint, Maxt≻}),

 (UNIV, MIN-R, MAX-R, {C}, Ø, Ø, {≺Domt, Mint, Maxt≻})≻

 end if

 if D is Domt≡ TIME then

 fn(D) ←≺(UNIV, MIN-R, MAX-R, {C}, Ø, Ø, {≺ TIME, Mint, Maxt≻}),

 (UNIV, MIN-R, MAX-R, {C}, Ø, Ø, {≺ TIME, Mint, Maxt≻})≻

 end if

 if D is Domt≡ DATE then

 fn(D) ←≺(UNIV, MIN-R, MAX-R, {C}, Ø, Ø, {≺ ONE OF WEEK-DAYS, Ø, Ø ≻}),

 (UNIV, MIN-R, MAX-R, {C}, Ø, Ø, {≺ ONE OF WEEK-DAYS, Ø, Ø ≻})≻

 end if

Algorithm 5. Composedterm procedure

 if D is ∀ R: C then

 fn(C) ←Normalization(C)

 if fn(C) = t then

 fn(D) =t

 else

 if fn(C) =b0 then

 fn(D) ← ≺(UNIV, MIN-R, MAX-R, Ø, {≺R, Ø , 0, 0, b0≻}, Ø, Ø),

 (UNIV, MIN-R, MAX-R, Ø,{≺R, Ø, 0, 0, b0≻}, Ø, Ø)≻

 else

 fn(D) ← ≺(UNIV, MIN-R, MAX-R, Ø, {≺R, Ø , 0, |Cθ.dom|, C≻}, Ø, Ø),

 (UNIV, MIN-R, MAX-R, Ø, {≺R, Ø , 0, |Cθ.dom|, C≻}, Ø, Ø)≻

 end if

 end if

 end if

 if D is δC then

 fn(C) ←Normalization(C)

 fn(D) ←≺(UNIV, MIN-R, MAX-R, Ø, Ø, Ø, Ø), fn(C)δ≻

 end if

 if D is C
ε
then

 fn(D)θdom ← UNIV

 fn(D)θMin ← MIN-R

 fn(D)θMax← MAX-R

 fn(D) θπ← Ø

 fn(D)θr← Ø

 fn(D)θε← Index-calcul(fn(C))δ

 fn(D)δdom ← fn(C)δdom

 fn(D)δMin ← fn(C)δMin

 fn(D)δMax← fn(C)δMax

 fn(D) δπ← fn(C) δπ

 fn(D)δr← fn(C)δr

 fn(D)δε← fn(D)θε⋃fn(C)δε

 end if

 if D is A ⊓ B then

 fn(A) ←Normalization(C)

 fn(B) ←Normalization(B)

 fn(D) ← fn(A)⊗fn(B) {Union of two normal forms}

 end if

 if D is δC@t then

 fn (C) ←Normalization(C@t)

 fn (D) ←≺ (UNIV, MIN-R, MAX-R, Ø, Ø, Ø, Ø), fn (c@t)δ≻

 end if
 if D is C

ε
@t then

 fn(D)θdom ← UNIV

 fn(D)θMin ← MIN-R

 fn(D)θMax← MAX-R

 fn(D) θπ← Ø

 fn(D)θr← Ø

 fn(D)θε← Index-calcul(fn(C))δ

 fn(D)θt← ≺Domt, Mint, Maxt≻

 fn(D)δdom ← fn(C)δdom

 fn(D)δMin ← fn(C)δMin

 fn(D)δMax← fn(C)δMax

 fn(D)δπ← fn(C)δπ

 fn(D)δr← fn(C)δr

 fn(D)δε← fn(D)θε⋃fn(C)δε

 fn(D)δt← fn(C@t) δ

 end if

To compute normal forms of ε field, we call a function that represents the exceptional concept. For this

purpose, we make an index table which includes pairs (number, 7-uple).The index-calculation procedure is

denoted in Algorithm 6.

2.2.1.3. Index calculation procedure

Algorithm 6. Procedure index-calcul(s) (s is a 7-uple)

 If ∃ a pair (n,s) in index table then

 Index-Calcul(s)

 else

 We create a new pair in index table(m, s)

 where m=number of pairs in index table + 1

 Index-calcul(s) ← m

 end if

The computation of the index of a seven uple returns a number that corresponds to the code of the seven uple

that will be used in the normal form; this also allows updating the index table.

The saving of space obtained is important in the case where the description handles a series of nested ε.

2.2.1.4. Procedure of comparison of normal forms

We first define the procedure Compar which checks equality between two 7- uples t1 and t2 .t1 resp t2 have

the form (t1.dom, ti.min, ti.max, ti.π, ti.r, ti.ε, ti.t) with i=1 (resp i=2). Compar calls the procedure Compar-roles which

allows checking equality of sets which denote roles. This procedure is denoted Compar(fn(C1), fn(C2), rep) in

algorithm t-subδε.

Algorithm 7. Procedure Compar (t1, t2, Response)

 if (t1.dom ≠ t2.dom) or (t1.min ≠ t2.min) or (t1.max ≠ t2.max) or (t1. π≠ t2. π) or

 (t1. ε≠ t2. ε) or (t1. t ≠ t2. t) then

 Response ← “No”

 else

 {Comparison of roles field}

 Compar-roles(t1r, t2r,Rep)

 Response ←Rep

 end if

Algorithm 8. Compar-roles

Repr ← “Yes”

 If ⃒Ar⃒≠ ⃒ Br⃒then

 Repr ← “No”

 endif

 while(Ar ≠ Ø) and (Repr = “Yes”) do

 let e ∈ (e=≺ R, fills1, least1, most1, c1 ≻; search e‟ in Br with the same name R

 if e‟ ∉ Br then

 Repr← “No”

 else

 let e‟ ∈ Br (e‟ = ≺ R, fills2, least2, most2, c2 ≻

 endif

 if (fills1 ≠ fills2) or (least1 ≠ least2) or (most1 ≠ most2) then

 Repr ← “No”

 else

 {Comparison of strict and default 7-uples of normal forms c1 and c2}

 Compar(c1θ, c2θ, reps)

 If reps= “Yes” then

 Compar(c1δ, c2δ, repd)

 reps ← repd

 endif

 else
 reps ← “No”

 endif
 Ar ← Ar– e

 Br ← Br – e‟

 endwhile

Corollary 1 . (Correction of t-subδε)

The algorithm that computes the subsumption t-subδε is correct since for any concept C and D:

C ⊑s D ⇒C⊑dD.

t-subδε is complete in accordance to CLδε-t since any descriptive subsumption implies necessarily a structural

subsumption. Thus:

Corollary 2. (Completeness of t-subδε)

The algorithm that computes the subsumption t-subδε is complete with regard to CLδε-t since for any concept

C and D:

C ⊑d D⇒ C ⊑s D

To use the notion of default, we use two approaches: definitional (subsumption) point of view and

inheritance point of view. In the next section we describe the inheritance point of view.

2.3. Inheritance point of view

We remind here that the principal objective of the definitional point of view is the subsumption, which refers

to concepts classification.

The user actually defines its concepts based on atomic concepts and then the classifier automatically

organizes the graph. From inheritance point of view we describe the inherited properties of a concept, which are

considered to be the basis of an inferential system.

If for example we consider T as being an instance of the concept Tree weather directly or not, that has a

property With_branches by default (which is not excepted). Then T is recognized as being an instance of

δWith_branches and With_branches is an inherited property of this instance. If a given user needs to know the

number of Trees corresponding to the property With_branches, then T is considered as one of them, however if T

is also an exception to this property (e.g. It is an instance of the concept Scion), then the precedence knowledge is

still true (Monotonicity of the classifier), but T is not anymore considered as a Tree with the property

With_branches (the non monotonicity of the inheritance process).

The aim of the inheritance process is thus to realize a preference of exception over default. From definitional

point of view an exception is subsumed by default, but the latter it is not omitted by the classifier thought it should

be retracted by the inheritance process.

If we go back to the example cited previously in this paper concerning the Concept Penguin; Fly is not an

inherited property since it is excepted, however the property Animal and the temporal property Mortal are

inherited.

For this purpose we describe an inheritance map from CLδε-t to CLδε-t. This inheritance procedure is the bases

for retrieving the inherited properties. It also helps distinguishing default from strict properties and answering

questions concerning conflicts and inconsistencies.

The major task of the inheritance procedure is to deduce the exception from concepts denotations (the two

parts ε from their normal form). The scenario for the inheritance calculation procedure for a concept C is the

following:

1- Replace each exception at an even level by a default in the denotation of C.
2- For each role of C, recursively call inheritance with the role value restriction.
3- Suppress P (resp. P

o
) in cδπ if P

o
 (resp. P)

is in cθπ.

The resulting denotation is called the inheritance form of C.

Algorithm 9. Inheritance Map

inheritance: CLδε-t → CLδε-t, such that

inheritance(a) =

res ← <(aθdom, aθmin, aθmax, aθπ, Ø, Ø, aθt), (aδdom, aδmin, aδmax, aδπ, Ø, Ø, aδt) >

for all y ∈ aθε ∪ aδε do

 res ← res ∪ transform(y, aθε)

end for

for all <r, p> ∈ aθr do

 res ← res ∪ <(Ø, Ø, Ø, Ø, <r, inheritance(p) >, Ø, Ø),(Ø, Ø, Ø, Ø, Ø, Ø, Ø) >

end for

for all <r, p> ∈ aδr do

 res ← res ∪ <(Ø, Ø, Ø, Ø, Ø, Ø, Ø), (Ø, Ø, Ø, Ø, <r, inheritance(p) >, Ø, Ø) >

end for

let res be <(resθdom, resθmin, resθmax, xresθπ, resθr, resθε, resθt), (resδdom, resδmin, resδmax, resδπ, resδr, resδε, resδt) >

for all x ∈ resθπ do

 suppress x
o
 from resδπ

end for

for all x
o
 ∈ resθπ do

 suppress x from resδπ

end for

return res

The inherited properties are the ones found in the inheritance map, the strict properties (resp. the default

properties) are the ones found in the strict part (resp. Default part).

Example: pe (resp. an, fl, mo) are the denotation of Penguin (resp. animal, fly, mortal) in the above example.

 pe
inh

 =< (Univ, Min-R, Max-R,{an, mo}, Ø, Ø, Ø), (Univ, Min-R, Max-R, Ø, Ø, Ø, Ø) >, bi
inh

 =< (Univ,

Min-R, Max-R {an, mo}, Ø, Ø, Ø), (Univ, Min-R, Max-R, fl, Ø, Ø, Ø) >

The strict inherited properties of pe are an and the temporal property mo, this is shown in the first set, in the

second set the field corresponding to the default part is empty since pe doesn‟t have any default properties.

Intuitively, pe is subsumed by bi (i.e. a Penguin is a Bird), however Fly is inherited by bi but not by pe (i.e.

without further information we say that a bird fly and a penguin doesn‟t fly).

Formally, pe ⊑ bi and pe ⊑ pe
inh

 , bi ⊑ bi
inh

 but pe
inh

 ⋢ bi
inh

 and bi
inh

 ⋢ bi
inh

. The subsumption pe ⊑ pe
inh

signifies that a concept pe is more specific then a concept pe
inh

 since it includes masked properties (the excepted

property Fly) which is essential for a correct classification process (w. r. t. bi), but cannot be an inherited property.

3. Conclusion

In this work we presented a new notion of description logic namely the temporal nonmonotonic description

logic that we formed by the combination of the nonmonotonic description logic JClassicδε [8], [9] and the

temporal component @ from 𝒯ℒ

[1], [2], [3]. We named this description logic TDLδε. Our work is summarized

in what follows:

- We introduced TDLδε, outlined its syntax, and provided the definition of each of its elements. We

showed how this description logic is appropriate for representing temporal aspects, and illustrated this

fact by examples from the domain of access control.

- We endowed TDLδε with an algebraic framework that allows distinguishing and formalizing the

descriptive and structural subsumption. In fact the descriptive point of view allows the calculation of

subsumption by comparing terms trough an equational system that defines formally connector‟s main

properties and determines the equivalence classes of terms. However From an algorithmic point of view

terms are not easily manipulated through subsumption. For this we need to provide a very closer vision

to the algorithmic aspect and a formal framework to validate the algorithmic approach. For this purpose

we defined a structural point of view that allows representing the properties of concepts by using a

normal form. Two terms of TDLδε are structurally equivalent iff their normal forms are equal.

- We described the algorithm for subsumption calculation and the procedures it uses; this algorithm lays

on the calculation of structural subsumption. We also provided elements that will allow us to show in

the future that t-subδε is correct, complete and with a polynomial complexity.

- We define the inheritance algorithm that describes the inherited properties of a concept, which are

considered to be the basis of an inferential system.

The implementation of the corresponding reasoner is in progress. This work is a preamble for our onward

objective: The use of the temporal nonmonotonic description logic for enhancing access control mechanisms.

References

1. A. Artale and E. Franconi, “A survey of temporal extensions of description logics“, In Ann. of Mathematics and Artificial Intelligence,
1-4, pp. 171-210, 2000.

2. A. Artale and E. Franconi, “A Temporal Description Logic for reasoning about actions and plans“, In J. of Artificial Intelligence
Research, 9, pp. 463-506, 1998.

3. A. Artale and E. Franconi, “Introducing Temporal Description Logics“, Invited paper at the sixth International Workshop on Temporal
Representation and Reasoning (TIME'99), IEEE Computer Society Press, 1999.

4. A. Artale and E. Franconi, “Temporal Description Logics“, In Handbook of Time and Temporal Reasoning in Artificial Intelligence,
The MIT Press, 2001.

5. A. Artale and C. Lutz, “A correspondence between temporal description logics“, in: Workshop Notes of the Int. Workshop on
Description Logics, DL-99, Linköping, Sweden, July 1999, pp. 145–149.

6. F. Baader and B. Hollunder, “Embedding defaults into terminological knowledge representation formalisms“, In Principles of
knowledge representation and reasoning: 3rd international conference, pp 306– 317, 1992.

7. F. Baader, D.L. McGuiness, D. Nardi and P.F. Schneider, “The Description logic handbook: Theory, Implementation and
Applications“, Cambridge university press, 2008.

8. N. Boustia and A. Mokhtari “Modeling Disjunctive Context in Access Control“, In International Journal on Advances in Software,
volume 5 no1& 2, 2012. N.

9. Boustia and A. Mokhtari, «A dynamic access control model». Applied Intelligence Journal, 36(1):190-207, 2012.

10. M. Bouzid, C. Combi, M. Fisher, and G. Ligozat, “Temporal Representation and Reasoning“, Annals of Mathematics in Artificial
Intelligence 46(3):231-234. Springer, March 2006.

11. P. Coupey and C. Fouqueré, “Extending conceptual definitions with default Knowledge“, Comput Intell 13(2), 1997.

12. J. MA and B. Knight, “Reified Temporal Logics: An Overview,” In journal of Artificial Intelligence Review archive, Volume 15 Issue
3, May 2001.

13. L. Padgham and B. Nebel, “Combining Classification and No Monotonic Inheritance Reasoning: a First Step“, In t77th International
Symposium on Methodologies for Intelligent Systems, pp. 15- 18, Norway. 1993.

14. L. Padgham and T. Zhang, “A Terminological Logic with Defaults: a Definition and an Application“, In 13th International Joint
Conference on Artificial Intelligence, pp. 663- 668, Chambery, France. 1993.

15. J. Quantz and V. Royer, “Preference Semantics for Defaults in Terminological Logics“, In Principals of knowledge Representation and
Reasoning: 3rd International Conference, pp. 294- 305, Cambridge, 1992.

16. A. Schmiedel, “A Temporal Terminological Logic“, In Proc. of AAAI-90, pp. 640–645, Boston, MA (1990).

http://dx.doi.org/10.1007/s10472-006-9024-3
http://dx.doi.org/10.1007/s10472-006-9024-3
http://dx.doi.org/10.1007/s10472-006-9024-3

